
DEPARTMENT  OF  METEOROLOGY 

FLORIDA STATE   UNIVERSITY 

Q bo 
TECHNICAL REPORT 

Variable Vortkity Trajectories 

By Seymour L Hess 

PREPARED   UNDER   PROJECT   NR   082   071,   CONTRACT   NONR - ©Ssfol) 

WITH   THE OFFICE  OF  NAVAL   RESEARCH 

15  NOVEMBER   1953 



1. Statement of the Problem. 

Tuirteen years ago CO. Eossby presented an analysis of the motion 

of air under conserration of its absolute vorticity which has had a con- 

siderable subsequent effect upon both theoretical and synoptic thought. 

Trom this has stemmed a more or less objective procedure for the calcula- 

tion of "constant absolute vorticity trajectories", hereafter designated 

as CATT. The synoptic applications have been investigated by lultz (2) 

who also gave a discussion of the various assumptions entering into the 

theory. 

One of the chief of these assumptions is that the horizontal div- 

ergence is zero. Constant vorticity trajectories are often used to pre- 

dict how atmospheric flow patterns will change; however, the near-geo- 

stropblc state of the atmosphere requires a pressure change fto accompany 

such a change in flow, and, from the continuity equation, pressure changes 

are associated mainly with horizontal divergence. Thus the following im- 

portant question may be raised! Is the field of divergence needed in or- 

der to keep the pressure distribution in approximate balance with a chang- 

ing velocity field of sufficient magnitude to in turn directly influence 

the flow pattern ? Ho attempt will be made here to answer this question 

directly. Instead we shall endeavor to determine the effect of a given 

and synoptically small divergence /ield upon an otherwise constant vor- 

ticity trajectory.  If such a small divergence has an appreciable  in- 

fluence on the motion then we may be justified in concluding that the 

answer to this basic question is affirmative. If we find no important 

effect then we may be justified in assuming that such small divergences 

are of no great importance for the state of motion. 



2. Derivation of the Equation of the Trajectory. 

If one neglects solenoids, viscosity, vertical velocity, and all 

derivatives of vertical velocity the vorticity theorem "becomes: 

where ,$ is the relative vorticity about the vertical, CO is the earth's 

angular velocity, r the earth1 s radius, 0 the latitude, u and v the hori- 

zontal velocity components directed eastward and northward along distances 

x and y respectively. Rosshy assumed that the entire horizontal diver- 

gence vanished. We shall investigate the effect of assuming that only 

bu/S x + a r/h y is zero, while the correction term due to the earth's 

curvature, - v tan j6/r , remains. The extent to which such an assumption 

is realistic will be discussed later; it suffices here to say that first, 

it is valid to prescribe such a divergence field and investigate its 

effects, and second, the magnitude of the divergence so assumed will he 

synoptically small, except near the poles. Tor example, at U$  H the 

assumed divergence will he less than 10~" s_1 for v « 5 m s"1 whereas 

the synoptic divergence is of the order of 10"** s~^. 

In order to see in advance the effect of such an assumption about 

the divergence let us also ignore £  in comparison with 2 u) sin p. 

Equation (l) "becomes: 

db Zoo        j   .     . ^^ 46**$ „ 

The first term is the term which controls CA7T and the second term con- 

tains the additional effect introduced here. One sees that at latitude 

4*5 the two terms are equal in magnitude and opposite in sign. Equator- 



o 
ward of k$    the first term dominates and the trajectories should qualita- 

tively resemble G&YT. Poleward of 45~ the second term dominates and the 

trajectories should curve oppositely to O&TT. 

We shall nov follow the derivation of GA.VT "by seeking steady state 

solutions and by assuming that vorticity expresses itself as curvature of 

the trajectories and not as shear. 

Then: 

v = c sin P u = c cos P 

where c is the wind speed, U/ is the angle the wind makes with east 

(increasing counterclockwise), and a prime indicates differentiation 

with respect to distance along the trajectory. If we assume that c is 

constant and recognize that 0' * siny/r , equation (1) becomes: 

This is the differential equation of the trajectory which for brevity 

may be written in the form: 

where «< = -2 (Or/c, g(0) = cos 2 0/cos P »   g a  2r. 

3. Method of Solution of the Differential Equation. 

Equation (3) was solved by a combined graphical-numerical method., 

If we are given c. Iff ,  &    and P  at some point along the trajectory, 

designated by m , then it is possible to compute the values of \U ,  Uf 

and P  at point m + l.a small finite distance further along the trajectory. 



If we replace differentials of angle and distance along the trajectory 

"by finite differences, A <p    and A S , equation (3) may toe written! 

Lf'=   rAS^lft+f^F-^r]*^***. (ty 

Here we are calculating the change in U//  in going from m to m + 1. The 

"bar indicates an average value of the quantity concerned in the interval 

from m to m + 1. The quantities w  and tf/'  may "be obtained with suffi- 

cient accuracy by extrapolation of these quantities from their known 

values at point m. The quantity j6 may then be obtained adequately hy 

plotting on a map an extension of the trajectory for the distance A-S , 

using the angle W  , and reading the latitude at the midpoint of the ex- 

tension. 

How that we have   ^ 5^m t m + 1 we may use tne relationship 

It is furthermore clearly consistent and proper to assume that 

and finally that 

Thus from (5) and (6) one gets the angle and its derivative at the point 

m + 1 , so that it is possible to continue calculating to the point m + 2. 

In practice it was found useful to choose A S s 1 deg. of latitude. 

This is small enough to make the finite difference approximation a good 

one, and large enough to keep the number of calculations per trajectory 

within reasonable limits. 
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k.  Resultant Trajectories. 

Figs. 1~5 give examples of some of the trajectories followed by air 

moving under the assumptions made here. 

In fig. 1 we have examples of trajectories "beginning from an inflec- 

tion point at ^5 N. Since at this latitude the two factors affecting 

d^/dt cancel, the air does not change curvature appreciably until it 

moves far away from k$  .  To the south thereof it curves cyclonically, 

as do CATT, but more slowly because of the cancelling effect of the di- 

o 
vergence term. When the air goes north of **5 the divergence term pre- 

dominates and continues to turn the trajectory cyclonically. This pro- 

duces the closed loop shown. Thus one of the salient characteristics of 

thes* paths is that south of h$    latitude westerly trajectories are sinu- 

soidal in nature and may be described as "stable". Poleward of ^5® wester- 

ly trajectories break up into closed loops and are, in a certain sense,"un- 

stable". A comparison to the equivalent CATT reveals that the present 

trajectories are of much greater wave length. An increase in speed causes 

an increase in the dimensions of the trajectory. 

Fig. 2 shows the result of changing the initial wind direction to 

due north.  The northern "loop" becomes much larger. Again this trajec- 

tory differs appreciably from the CAVT. 

In fig. 3 the behavior of initially easterly winds poleward of ty? 

is seen.  Just as westerlies give sinusoidal paths in CAVT so in this 

theory easterlies at latitudes such as this give "stable oscillations." 

The CAVT for easterlies are composed of closed loops and are "unstable". 

Pig. h  shows a complex trajectory beginning as a south wind at 60 N. 

At fir3t the effect of convsrgencs in poleward moving air predominates 

and the parcel turns cyclonically.  Then as the air is turned southward 
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divergence "begins and anticyclonic vorticity is generated. However, in 

the course of this motion the air has gone south of k$  so that the non- 

divergent latitude tern "becomes dominant. Thus, as in CAVT, the south- 

ward moving air "builds up cyclonic vorticity which turns it through a 

closed loop in southerly latitudes. 

finally, there is an example of an equatorial trajectory in fig. 5* 

At these latitudes the added divergence term in equation (l) should "be 

negligibly small since it has tan P as a factor.  Specifically, in the 

trajectory shown the added term is less than one percent of the Hosehy 

latitude term. Nevertheless, the figure shows a considerable difference 

in wavelength "between this and the corresponding CAVT. It has "been veri- 

fied that this difference cannot "be attributed to approximation in the 

computing procedure. There seems to "be no escape from the conclusion 

that even so small a term may, if consistent in its effect, have an ap- 

preciable Influence on the result. There may "be a relationship between 

this case and what Birkhoff (l) has called "asymptotic parodoxes" in 

differential equations. 

5. Significance of the Results 

It appears from these trajectories that a divergence field of rela- 

tively small magnitude may have an Important effect upon the air trajec- 

tory. This lends support to the suspicion that the divergence associated 

with moving pressure systems has a direct and significant effect upon the 

motion of the air, and casts doubt upon the extent to which the results 

of non-divergent theories are quantitatively applicable to the real atmos- 

phere. 

One may now inquire how realistic are the divergence fields postula- 

ted here and, therefore, how applicable arc these trajectories to the 
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real atmosphere. One must recognise that there Is a certain degree of 

artificiality in any arbitrary specificatfon about the divergence. Die 

artificiality in the present specification is seen most clearly if one 

considers air near the pole where the divergence assumed here approaches 

infinity.  This is clearly inappropriate and it must be true that 

$U/}x + «V/3>^-  also approaches infinity near the poles, but with 

opposite sign from the latitude term, so that the total divergence re- 

mains finite. Vith this in mind, nevertheless certain features of the 

present assumption are quite realistic provided one stays away from high 

latitudes. First, we are imposing convergence for southerly winds and 

divergence for northerly winds (in the Horthera Hemisphere), This corre- 

sponds qualitatively to the synoptic observation of a tendency for con- 

vergence ahead of troughs aloft and divergence ahead of ridges aloft. 

Second, the divergence postulated here, - v tan 0/r, is the divergence 

of the geostrophic wind.  That is, insofar as the wind field strives 

to remain geostrophic it imposes upon Itself the divergence field In- 

vestigated here. Since the quasi•geostrophic nature of the wind in mid- 

dle latitudes is well known, it seems likely that the divergence under 

discussion is one of the basic components of the total divergence field. 

When one examines the theoretical trajectories themselves one sees 

certain features which are realistic and others which are not. The ten- 
e 

dency shown in fig. 1 for westerlies south of ^5    to be "stable", but 

north of ^5 to break up into closed patterns, is similar to the situa- 

tion on normal upper air charts. This normal feature is not explained 

by a non-divergent, barotropic theory such as that for CAVT. On the 

other hand, for instance, the trajectory shwon in fig. 4 is rather complex 
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and is not such as are normally observed. This may "be "because this tra- 

jectory initially comes close to the pole where other divergent effecte 

must be important, and "because it later goes to very low latitudes where 

the tendency towards geostrophic balance is quite weak. 

The claim is not advanced that these trajectories are a significant 

practical improvement over CAVT, nor that they are useful as prognostic 

tools. They do seem to point to the great importance of the direct ef- 

fect of divergence upon the general flow via the vorticlty equation, and 

there are certain aspects of the results which carry versimilitude. The 

results also illustrate that fact that one must "be very caref-zl in ignor- 

ing small terms in differential equations, since they may have large 

effects. 
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